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Abstract

Monitoring of c.omplcx continuous physical sys-
tems has been traditionally accomplished in
compulcr-based process control soft ware by onc or
bolt] ofthcfollowing  rnctbods: l)cslal~lisllit] glit]~it
checks for sensors and raising an alarm whcncvcr  a
sensor’svaluccrosscs oi]cofttlcsc tllrcsl]olds, :i!l{l
2) comparing prcdickxt vahrcs from a simulation
toaclual  scnsorvalucs and flagging discrcpancics.
‘lhcsc anomaly dclcction techniques ,arc not as ro-
busl as lhcynccd  lobe. Failures can manifcsl in
ways which arc nol captured by lhcsc Iradilional
mcihods. Fur(tlcrn]orc,son]  canon] alousbchwiors
arc more naturally dclcckd at lhc lCVCI of global
interactions affccfing mulliplc sensors,
Wc dcscribc cxlcnsions 10 lhc traditional lcchniqucs
for anomaly dclcclion, as WCII as ncw anomaly
dc(cc(ion  techniques based on altcrna(c nmdc]s of
what dis(inguishcs normal from abnormal bchfiv-
ior. Somcof  thcsc(cchniqucs arcdcsigncd  (o cap-
Iurcanomlics  at individual sensors; sorncdclccl
anomalies across collcdionsof  sensors. 10 assist
in rcasrming about complex global behaviors, wc
cons[rucl  and simulate a causal model of Ihc physi-
cal syslcm being n]onitorcd.
These Icchniqucs bavc been Icskd on da(a from lhc
hvironmcnlal  Control and Life Support Syslcm
(lX1.SS)  of Space Station Freedom (SSF) and arc
being applied in advanced monitoring prololypcs
for the SS}J Exlcrnal Aclivc Thermal Conlrol Sys-
tcm (EA1’CS)  of SS1; and lhc FMvironmcntal En]cr-
gcncy and Consumables Managcmcnl  @IiCOM)
subsystem of lhc Space Shulllc.

1 ]ni roduct ion

Mission operations pcrsonnc] at NASA hvc lhc lask of dc-
Icrmining, from moment 10 morncnl, whether a space plal-
form is cxhibi(ing behavior which is in any way anomalous,
which could disrupt the operation of lhc platform, and in lbc
worsl cmc, could rcprescnl  a loss of ability to achicvc mission
goals. A traditional tcchniquc for assisting mission operators
in space plalform hcallh analysis is lhc cslablishmcnt of alarm
thresholds for sensors, typically indexed by operating mode,
which sunmarixc which ranges of sensor values inlply Ihc

cxislcncc of anornalics. Anolbcr established tcchniquc  for
anomaly dckdion  is lhc comparison of prcdickd values from
a simulation to actual values rcccivcd in Iclcmcky. 1 lowcvcr,
cxpcricnccd mission opcralors reason aboul more than alarm
Ihrcsbold crossings and discrcpmcics bctwccn prcdiclcd  and
nciaal to dclccl monurlics: (hey may ask whclbcr a sensor is
behaving diffcrcnlly Iban it has in the past, whclhcr a curt’cnt
behavior my lead Kr a global pcrlurbalion  or whclhcr a cur-
rcnl bchvior  may lead 10- lhc pwlicrrlar bane of opcralors -
a rapidly developing alarm scqucncc.

A faull which propagates through a syslcm fas(cr [ban Ihc
sensor polling ralc can crcalc a silwdion wbcrc, bctwccn onc
sampling and lhc ncx(, lhc number of sensors in alarm goes
from zero 10 lens or more. lnformlion  aboul (hc ordering of
events is IOSI. in ibis kind of cmcrgcncy  situa[ion, opcmlors
can cxpcricncc information over’load and a compromising of
their ability 10 intcrprcl (hc sensor dala.

Our approach 10 inlro(iucing aulonmlion  into real-time sys-
lcnls monitoring is bawd on Iwo obscrvat ions: 1 ) mission
opcra[ors employ multiple mcihods  for rccogniz.ing  anom-
lies, and 2) mission opcralors do not and should nol in(cr-
prcl all sensor dala till of lhc time, l’hc subject of (his
paper is an approach to determining from Inomcnl 10 mo-
mcnl which subscl of lhc availab]c sensor data for a sys-
lcm is mos[ informlivc about the prcscncc of, or polcn-
lial for, anomlics occurring within Ibc systcm. Wc Icrm
this process .wwsrv selection and wc have implcmcnlcd a
pro(o(ypc sclcdivc monitoring sys(cm called SE1.MON [7;
81.

The SEI, MON sys(cm hm its origins in a sensor plan-
ning syslcm called GR1 F’Ii [71 which planned information
galhcring aclivilics 10 ve r i f y  [tic cxcculion of robol 1A
plans. O(hcr model-based monitoring syslcms include Dvo-
rak’s M 1 MIC,  which performs robusl discrcpmcy  dctcclion
for continuous dynamic syslcms [9; 101, and IICCOSIC’S
DA2’M1, which infers syslcm s(alcs from incomplclc sen-
sor data [51. 311c SE1.MON work cornplcmcnls olhcr work
wilhin NASA wllicb has focused on empirical and nlodcl-
base.d mc[hods for faull diagnosis of acrospacc  plalfonns [1;
13; 111.

‘1’hc organi~:~i ion of (his paper is as follows: First wc dc-
scribc sensor importance measures used (o identify the prcs-
cncc of anomlics  in n monilorcd systcm, and 10 appraise the
rclcwmcc of diffcrcn(  sensors for rcporling on lhosc anom-
lies. ‘lko  of llIcsc measures arc cxlcnsions of the traditional
Icchniqucs  of limil sensing and discrcjmcy dclczlio]l. Ihc
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Figure 1: SRI .MON Archilcc(urc,

seven measures fall into tbrcc catcgorics: lhosc which con-
cern lhcmsclvcs with data provided by siaglc sensors, those
which uliliz.c a simulation of the syslcm being n~onilorczi, and
lhosc which ulilizc a causal model of lhc syslcm being moni-
tored. As parl of our discussion of the usc of causal nmiciing
and rcmsoning,  wc bricily dcscribc  our event-driven causai
simuintor and our causal modciing laaguagc.

Next wc dcscribc  the tcsi and application {iomains wc arc
working with, providing mos( dclaii on (ilc SSl~ EA1’G.  ‘J’hca
wc rci~or[ and discuss rcsuits on cmpiricaiiy evaluating tiIc
performance of the SJH.MON sysfcm on data from ii]c SS1’
I ICY .SS tcsliwd. As part of tilis scciion, wc dcscribc  how
SEi .MON dclcclcd an anomaiy wilicil the lradilionai moni-
toring mclilods faii 10 dclcd. Finaliy, wc coaclu(ic will) some
lilougills on fUIUIC lCSCWCil aJ)d appiiCaliOllS and a summnry.

2 Approach: Selective Monitoring

How dots an intciiigcnl agCl]l – hrrJnml or machine - ObSCJ’V-
ing n comp]cx pilysicai syslcm, dczidc when somctiling is
going wrong? Abnormai  bciuwior is aiways defined as R dc-
par[urc from normai behavior. Llnfort unaici y, lilcrc appears
10 bc no siJ@c, CriSp dcfinitioJl of “normal” behavior. Ill the
traditional monitoring Icciuliquc of iinlit sensing, normai i~c-
imvior is prcdcfincd by nominal value ranges for sensors. A
fUlldiUllClllai iinlilat ion of tilis approacil is lhc iack of scnsiiiv -
i(y to coJllcxt. A Single fault may Jnanifcsl in different ways,
dci~cnding OJl Iilc COl@uratiOn  Of tiic S) NiCJN WilCJl tiIC  fault
occurs. T’hc cornpiicd notion of an aiarm thrcshoid  Jnay Jlol
caJJturc Ihcsc subiiclics in rnanifcstation. Anolhcr iimilalion
is lilt Jwrcly Jocal View of Sensors lakcn i~y lhc Jimit scJJs-
ing kchniquc. 11 is J)ossibic  for a syslcm to cxilibil a JM(crn
of sensor values, each value in its rcsJmciivc  nominai  mngc,
which is nonc[hclcss inconsistent. Finaily, il is never possible
io anlicipalc all fauil modes of a sys[cm. Since aiarm ranges
arc Jmxicfincd during a design anaiysis in wJ~icil faal( modes
of tile syslcm arc cnumcralcd, a new fault behavior may noi
lriggcr a Jmdclincd ai,arm at ali.

10 lhc olilcr lradilionol monitoring lcchniquc of discrcJXulcy
dCICCliOJL normal behavior is obtained by simulating a modci
of k systcm being monitored. Tilis aJJJwoirch avoids tile
Jimilalions of tile Jimit sensing aJJprOaC.h. Normai behavior
iS flIiiy COlltCX1-SCl)SiliVC,  being derived Via siJnrrlalion frOlll
currcnl SlalC information. And il! princiJ~ic, Jlcw faults can bc
dckckxi bCCaLKC there is no cJoscd-worid  assumption based

on JM’CViOUSiy and Sl[diCaliy CJIUJllCralCd kllowll faUlk. ]]ow-
cvcr, (ilc modci-based aJ~J)roach of discrcJ)ancy  dckclion has
ilS own ]ilnila[iOl)S. q’hC 8J)JM’OXh  iS Ol)ly as good aS ~hC SyS-
lcm modci, aa(i some bcimviors, e.g., non-iincar bcilaviors,
cannoi bc modcicd  wiiil high fidcii(y wilil cxisling Iccilniqucs.
la addition, lK)llllai syslcm hCilaViOr lyJ)icaliy cilaJlgcs Wilil
time, and the nmici Jnust Continue 10 cvoivc. ‘MC modciing
Jwoccss must conlinuc both bccausc any iong-iivcd sysicm
wiii degrade, and bccausc a syslcm may bc used for different
puri)oscs ti)rougiloul ils ii fclimc. A good cxamJ~ic of the ialtcr
is dlc Voyager 2 mission and sJJacXcrfifl Wilicil were, rcsJEc-
livciy, rCJ)i:ll]l)Cd and reprogrammed 10 comJ)cnsalc  for iowcr
iiglll Jcvcis for lhc cxlcndcd mission to Llranus and NCptUJ~C
[121.

Noting the limiiaiions of lhc cxis[ing monitoring lcch-
niqucs, wc. have [icvclopc4i an apiwoacil  to monitoring which is
designed 10 make tile anomaly (iclcclion Jmoccss Jnorc rOhUSl,
sJ)cCificaliy 10 rcducc lilt number of Un(ic(cctcd anomdics
(faisc ncgalivcs). Towards Iilis cad, wc inlroducc mulliJ~Jc
anomai y modcis, SCVCJI in aii , cacil CJllJ)iOyiJl~  a diffcrcJd
nolion of “normal” hchavior. “Ilvo of lhc seven arc based
OJ1 lhc iradilional monitoring kcimiqucs, For each anomaly
model lilcrc is a sensor imJ~orlancc  mcnsurc. I’hcsc nv-xt-
surcs dctcrminc  why, ni a Jxulicular moment, onc Sensor Jnay
bc more worlhy of oJ~crator aiicnlion anolhcr. TiIc anomaly
modcis and sensor imJ)orKulcc mc.murcs arc based on con-
ccp[s from modci-bmxi  rcmoning,  S[alislics, and information
Iimmy. Wiliic any singic oJlc of Iilcsc sensor imJ)oriancc mea-
sures Jnay fail to dclcd an anomfily, wc wili dcmonslt’ak how
COiiCC(iVCiy, thCY Jmvidc a fiJICr SafCly J)CI Ihall lhc [radilioanl
monitoring lcci)niqucs.

During each timcslcJ~ ali sensors arc scored according 10
lhcsc sensor importance measures. l’hc scores arc uscci as a
basis for an ordering on the sensors. SW. IJigurc 1,

‘1’iicsc sensor scoring measures arc Jxwlilioncd  in[o Iwo
broxi ca(cgorics.  I’ilc first SC( - cmpiricai mctilods - r c i y
on currcnl and hisloricat data 10 dc[crminc imJ)orlmlcc, and
lake a purely iocai view of sensors, ‘l”hcsc measures include
surpr ise ,  olorttl, otlticipatc olarttl, and ~wli]c ch(rmgc.  T’ilc
alfirw measure is bmcd OJ1 liic traditional notion of Jimii sens-
ing. Mcmurcs  from tile second set -- modci-lmcd mclho{is

ClllJ)iOy  a lllO(iCi of (ilc SyStC1ll aI]d an cvcn[-(irivcn  simu-
lation capahiii(y  to reason ahoul current and cxpcztcd  fu(urc
syslcm pcrformncc 10 dctcrminc sensor imporimcc. TiIcsc
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tncmrrcs inc]udc dcvia/ion, .wwsifivify, and cascading  o/atwL$.
I’hc dwia/ion rncasurc is based on lhc Iradilional notion of
discrcpnncy dclcclion. The last Iwo rncmurcs,  .wwsi(ivi(y  and
ca,w-aditlg  alarms, perform cxplicil causal reasoning on lhc
n~odcl of a syslctm.

This pnpcr will conccntrtilc on our n~odcl-based n]oniloring
n~clhods,  providiag n]ost dclail on our usc of event-driven
sirnukdion and causal reasoning lcchniqucs.  More rtctail on
our cn~pirical n~oniloring rmclhods  can bc found in [81.

2,1 Empirical Anomaly Detection Methods

la this section, wc briefly dcscribc  the empirical mcdmds  that
wc usc 10 dctcj-n]inc,  fron] a local vicwpoiat, when a Sensor iS

reporting anonlalous  bckrvior. There arc four empirical sen-
sor inlpor[ancc rncasurcs:  surprise, a/amt, fltlliripale alartn,

and vrduc chmgr. ‘1’hcsc  tncmurcs usc knowledge aboul each
individual sensor, wilhou[ know]cdgc of any rclalions among
sensors.

Surprise
An appealing way to assess whether currcnl behavior is

anomalous or not is via comparison (0 pml behavior. This
is lhc csscncc of the s/4rpri.w  rncmurc. It is designed to
highlighl a sensor which behaves olhcr [ban it has historically,
Spcciticalt y, .wrpri,w  uscs lhc historical frequency dist ribut ion
for Ihc sensor in two ways: To dctcrn]inc fhc tikclihood of
lhc given current value of the sensor (~/~1/J.r14al/Ic.r.~), and to
cxan]inc lhc rclalivc liticlihoods of diffcrcnf values of the
sensor (i)lforl)la/i\~f)lcLr.r),  11 is dlosc sensors which display
unlikely values when olhcr values of the scnsrrr arc n]orc
likely which gcl a high surprise score. Surprise is nol high if
lhc only reason a sensor’s value is unlikely is that there arc
nlany possible values for the sensor, all equally unlikely. Scc
Pigurc 2.

I’hc i)tforftlalit)e)lf.s.t  con]poncnt  of t hc surpri.tr rmcnsurc
provides lhc kcy 10 dctcc(iag a subllc anornal y which is n~isscd
by both linlil sensing and discrepancy dc.tcc[ion, as wilt bc
discussed bc]ow.

Ahrrvn

Alarm thresholds for sensors, indexed by opcraling n]odc,
1 ypicall yarc cstab]ishcd through an off-line anal ysis of systcm

high informativeness
high unusualness
high surprise

low informativeness
high unusualness
low surprise

values and frequency distributions.

design. ‘1’hc notion of dmm in SELMON  cxlcnds  the usual
onc bit of information (the sensor is in alarm or it is not), and
also rcporls how nwch of the alarm range has been traversed.
I’tlus a sensor which has gone dcxq> into alarm gels a higher
score than onc which has just crossed over thcalarm threshold.

Alarvn Anlicipalion

The alarw a)l/icpa(ion nwasurc  in SE1 .MON pcrfornls a
sin]plc form of Ircnd anal ysis 10 dccidc whether or not a sensor
is cxpcdcd  to bc in akrrm in the future. A sbziightforward
curve fit is used to projccl when the sensor will next cross an
alarm threshold, in either dircztirrn. A high score Incans (IIC
sensor will soon enter alarm or will rcn]ain there. A low score
nlcans fhc sensor will rcnmin in the nominal range or cn~crgc
fron~ alnnn soon.

value change

A change in lhc value of a sensor Inny bc indicative of an
anonlaly. 10 order to bcllcr assess such an cvcn[, the value
r+augc n]casurc in SEI .M(IN cony}arcs a given value chaagc
to historical value chnngcs  seen on thal sensor. The score
rcporkd is based on (tic proport ion of j)rcvious value chaagcs
which were lc.ss than the given value chnngc. It is maximum
when the given value ctmngc is the grciitcst value change. seen
to date on thal sensor. 11 is n]ininmm when no value change
has occurred in that sensor.

2 . 2  Modct-]lased Anrnnaly  l)eteclion MethrKls

Although nlany anonmlics  can bc dctcctcd by applying
anonlaly n]odcls 10 the behavior rcporlc(i at individual sen-
sors, the n~osl robust nlonitoring rc~uircs reasoning about
interactions occurring in a systcm and detecting anonlalics in
behavior reported by several sensors.

T’hc three n~odcl-bm$cd sensor inqmrlancc scores in SIiL-
MON  arc dcvia/io~~,  scmi(ivi(y, ad ca.wwdi)lg  alarm. While
devia(im Only  rc~uircs thal sonic form of sinwlation bc iWlil-
ablc for gcncra(ing  sensor WIIUC predictions, .wsifivif.y and
co,wditjg alrIIws require (hc ability to sin~ulatc and reason
with a causal rnodcl of the systcm being n]onitorcd.

in tllc next section, wc dcscribc  the usc of cvcnl-driven
simulation and cxplicil causal reasoning 10 support nlodcl-
bascd n~oniloring n~cttlods. qbwards this cad, wc include
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Figure 3: A generic causal graph.

some (lclail on two 1001s wc have buill wilhin Ihc SELMON
projccl: our MISE event-driven sinwlator which accepts a
causal rmodcl [14], and 13 DSEL, our causal rnodcling language
[21.

Dcvialion

l’hc deviatim rncmurc is our cxlcnsion of llic traditional
rnclhod of discrepancy dctcdion, As in discrcpimcy  dclcc-
lion, conq~arisons  arc n~adc bctwccn prcdickxl and aclual sen-
sor wducs, and diffcrcnccs arc inlcrprctcd 10 bc indications of
anonlalics.  I“his raw discrepancy is cnlcrcd inlo a norn~alizl-
tion process identical 10 (hat used for lhc value change score,
and it is this rcprcscntalion  of rclalivc discrepancy which is
rcporlcd. V ‘tic drviruion score for a sensor is nlininmm if Ihcrc
is no discrcpnncy  and rnaxinwm  if lhc discrepancy bc{wccn
prcdictcd and ac(ual is (11c grcxlcs( seen 10 dale on llIat  sensor.

2.2.1 Cnusal Analysis

Many forms of rcmoning rclcvanl to n~oniloring can bc
supporkd  by a causal rmodcl of a syslcn], For Ihc purposes
of this discussion, wc define a causal rnodcl to bc onc which
provides cxplici[ information aboul the quantities of a systcm,
lhc sh”uclural conncdions  through which quanli(ics inlcracl,
and (hc nlczhanisn~s which govern how behavior propagates
fronl onc p,ad of the systcm  10 anolhcr.

Wilh this kind of infonnalion, it is possildclo  reason about:
IIow faulLs nlay nlanifcst in anonlalics al sensors which arc
c:iusaliy downslrcm  and physically dislanl from lhc location
of a faull. }1OW tbc inforn]ation  rcporlcd al onc sensor n~ay
bc inq)licil in snot her, and hcncc rcdundanl. 1 low several
sensors n~ay bc in an inconisknl  slalc al(hough each is wilhin
its nonlinal range and rcpor[ing  a prcdictcd  value. }Iow an ap-
parently benign current Nalc n]ay contain lhc scccis of highly
undesirable behavior about to n~anifcs[ in ihc near fulurc. All
of lhcsc. ideas on how 10 cnlploy  causal rc~ssoning  for nmnilor-
ing purposes arc being explored in lhc SEI ,MON projccl. q’hc
n~ost fully dcvclopcd idea at this lin~c is that of using a causal
n]odc] 10 reason about fulurc behaviors. 10 S111 .MON,  this
reasoning is cn~bodicd in lhc IWO causal n~casurcs setl.fi/ivi/y
and rwsrmiing rdoms.

,$cn,fi/ivify nmasurcs  the polcnt ial for a large global pcr-
Iurbalion 10 develop from current sfalc. Cmwditlg dams
measures the potcnlial for an al<arm scqucncc 10 develop from
current slalc. Bolh of lbcsc aaonlaly  nlcfisurcs  usc a causal
sinlulalor to gcncra(c prcdic(ions about fulurc slaics of lhc
systcn], given current stale. Clmcn[ stale is lakcn 10 bc dc-
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fined by boll) (hc cun’cnt values of syslcm partin~clcrs (not all
of which n~ay bc sensed) and the latent events already res-
ident on the sinwlalor agenda. I’hc n~casurcs assign scores
to individual sensors accordiag  to how (hc sys(c.tn pararnctcr
corresponding to a sensor participates in, or influcnccs, the
prcdiclcd global bcbavior. Rough]y  speaking, a sensor will
have a high semilivily score when hchavior  originnling at that
sensor causes a l,argc :unount of clmngc clscwhcrc in the sys-
ictn. A sensor will have a high cmcadi}~g  alrvtm score when
behavior originating al Ihal sensor causes a large number of
alarms clscwhcrc  in lhc syslctn.

Figure 3 shows a generic causal graph. Syslcal pfiranlclcrs,
sornc of w}licb will have associated sensors, arc rcprcscnlcd
by nodes in this graph. Arcs rcprcscnt lhc nmhmism which
dclcrminc if and how syslcm parameters affcc[ olhcr syslcm
parameters. I’here arc two node subscls of interest rclalivc
[o a given syslcm paramclcr, or quantity node Q. These arc
CausesQ, tbc SCI of qunntilynodcs upstream from Q in thcdi-
rcclcd causal graph, and ~;~~eCt$Q,  lllc SCI of quanlily nodes
downstream from Q in lhc dircclcd causal graph. In coaqml-
i ng tact I scn sor’s scnsi(ivi(y or crowding fllmm score, we
arc intcrcslcd  only in behavior wbicll “imsscs through” the
quanlily cor~csponding (o lhc given sensor. I’hc only cvcn(s
proccsscd  by lhc simulalor  arc lhosc involving tbc quanlily
itself, ils causes, or its cffccls. lnilialiy, IIlc sinwlaloronlypro-
ccsscs  events duc 10 the quantily  i[sclf or ils causes. IIowcvcr,
once an cvca[ at the qum(ily  itself is proccsscd, lhc sinwln-
lor also procc.sscs events among lhc cffcch of lhc quantity.
“1’hcsc  events arc said to derive from the quanlily. An event
al a quanli[y which is nol rcachablc  from Q is nol proccsscd
by lhc simulalor,  even if it is on the simulator agcndn, for
such behavior cannot have been inllucnccd by (tic qwullily of
inlcrcst, I’hc only sinlulalcd cvcnls which conlribrrtcto a sen-
sor’s .wtj.fili)’ily or fwscding alarm score arc ttlosc involving
tlIc quantity itself or its (scascd) cffcds. Simulation proc.czds
unlil  a slalcd fulurc  time is rcachcd.  Currcnlly,  wc assume
tbc.rc is no fmdback,  i.e., the causal graph is a dircclcd acyclic
graph.



Mnsifivily
IIIC algorilhm used to compute a sensor’s srwsitivily score

is as follows:

Given currcn( systcm slalc
(quantity values al tO and queued cvcnls)

For cacti quantity Q:
~c~~icvc ~~~se8Q
~ch’icvc ~;~~eChQ
Simulate only those events originating or deriving from a
quan(ily g 6 {Q} (J CWWQ
Collcd all cvcnls  at a sensed quanlity Q, c #;iieCi!.9Q
occurring al lime t < i!o + At:
I cl

iO is the current time. At is the maximum time forward 10
simulalc.  iWax.Chartgc(Qe) refers to Ihc l,argcs( historical
value change seen on a given sensor. The values which arc
summed arc the ratios bctwccn the maximum prcdiclcd value
chnngc for a given sensor Qe and lhc maximum historical
wduc change for that sensor. ‘Ilc .wsi(ivily score is maximum
when every sensor causally downstream from a given sensor
is prcdiclcd 10 cxhibi( ils l,argcsl  value change seen 10 dale.
‘1’hus lhc maximum score for a given sensor is equal to Ihc
number of sensors causally downstream from that sensor in
the causal graph. The .wsi(ivily score is minimum when no
clmngcs arc prcdiclcd  10 occur causally downstream from a
given sensor. All semi/ivi~y  scores arc zero if ihc systcm is in
a pcrfcdly slcady slalc.

Nolc lhal for a given sci of prcdiclcd, cauwdly related
cvcnls, a sensor’s score is monotonically Iliglwr (Ilc closer
il is to the causal source of thal global  behavior. This in-
formation may bc uscfrrl, for cxamp]c, in aiding opcralors  in
sclccling a single control aclion widl the grcnlcst impact.

Cascading Alarms
‘1’hc algorithm used to compute a sensor’s Ca,wwdillg alarms

score is as follows:

Given currcnl systcm  stale
(quanlily values at to and queued cvcnls)

For each quanlily Q:
~c[ricvc ~~aUsesQ
~clricVc ~j~$eCbQ
Simrrlalc only those events originating or dcr’iving from a
qU:ll)lily g C {Q} U ~aUsCsQ
C!ollczt all events at a sensed qwmtity Q. E f;~~CCtsQ
occurring al time t < to + At:
121

Casca&ngA/artns(Q)  = ~ ltt. A/arm(Qt (i))

lrz-A/arnt(Qe(t)) is 1 if the quantity Q, is in an alarm
range at simulated lime i?; olhcrwisc it is O. The rwscrding
alarws score is maximum when every sensor causally &wvn-
slrcam from a given sensor is prcdiclcd to bc in alarm. 3’hus
ihc maximum score for a given sensor is equal 10 lhc num-
ber of sensors causally downstrcm from lhal sensor in lhc

O J . . . . . .

Q$il!:l~ “
#Q ‘j

. . . . . . . ...’

Mechanism ..:.’%:..
Q ~{,  p \

7ransfer=>  A , . . . . . . ..f
.

Delay => 8 .

Q
*.$C>$

t,.....:...’

Figurc4:  Causal simulation in I; IISE: A mcckmism cvalualcd
at lime ti will propagalc  its value al ti+ 6.

causal graph. q“hc cmrwdi}lg drum score is minimum when
no alarms arc prcdiclcd to occur causally downstream from a
given sensor,

Note thal the ca.wmiing rrlrwm score is designed to give
rnonolonically higher scores to sensors thirl arc closer to the
causal source of an alarm scqucncc. I’his kind of information
may bc cxtrcmcly valuable 10 an opcralor allcmpling 10 inlcr-
prct a situation where mulliplc alarms appeared bclwccn onc
polling of (Ilc sensors and lhc ncx(.

2,3 Giusal  Simulation ancl Modeling

la this scclion. wc briefly dcscrihc  (1IC HISfl cvcnl-driven
causal simulalor ml lhc F.DSEL causal modeling language
which suppor( lhc S1;1 .MON  systcm.

causal  mo(ic]s arc an abstraction for describing lhc behav-
ior of a sys(cm by rcprcscnting  the physical proccsscs occur-
ring within lhc syslcm as discrctc functions to bc cvaluakd.

A cau.tal model characlcrizcs  a physical systcm  in terms of
slalc variables and causal influcncc rclalions among (1IC vari-
ables. In the NW,WJI graph defined by the state variables and
in flucncc  rclalions, changes in any wwiablc may bcpropagatcd
10 other variables through (hc influcncc rclalions. ~ausal sim-
ulation is [hc process of tracking Ctmgcs in Variables and
propagating Ihcm to other variables through influcncc rcla-
I ions, thereby producing a ncw scl of changes. lmp]icil in Ihc
notion of causalily arc Ihc conccpls of m’eH/ and causal fime:
INcnls comprise changes in slate variahlcs duc 10 a specific
influcncc rclalion and with rcspccl to a specific momcrd in
time. I’hereby, causal  lime moves forward duc to dchiys in
(IIC propngafion of changes in the caustd model.

la our causal modeling langrmgc, called EINI; I,, causal
models arc rcprcscnkd in (crms of Ihcsc primitives. Causal
lime is cxprcsscd as a monotonically increasing scqucncc  of
inlcgcr-valucxl  im~rr)l(.r,  Each slate wariablc  is dcnokd by a
qwrn/i/y. Each infl ucncc rclalion is dcscribcd by a m’chmi.w
which cncapsulalcs a set of iapu[ quantilics, a set of oulprrl
quanlitics, along wilh frau.!frr and deloy funclions.  l)uring
simulation in El)SIl , lhc Iransfcr function is cvalwrlcd wilh
lhc mcckrnism input qwmlilics 10 prrxiucc a value that will
bc propagated to each of lhc mechanism oulpul qwmtitics.
The dchry function is simultaneously cvalunlcd 10 produce an
offsc[ from lhc current simulation lime. Value propa~alion
takes place, al lhc rclalivc time rcluracd by the delay function.
}iigurc 4 visualizes mechanism evaluation. Simulation con-
linucs unlil a user-spccilkd lime limi[  is rcachcd or lhc model
rcachcs  quicsccncc.
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Wcado])l  acot]]])ol]cl)t-cct]  tcrcdal)])ro:ictl  tocaus:il  nmd-
cling. ~`t]isn~odclir]  gal)] )r()actl  dislil]guisl)cs  lt)ccol)slitllc.t)ls
of the syslcm being rnodclcd  as mmlpotmls  and the sh’uclural
ro)l)~cclio~~,$ al~~oi~gltlcn~. A1>llysical  col~~l~ol~c.l~t  isil~luilivcly
dcfit~ti asadiscrctcclct~~  ct~lofa ]~tlysical systcl~]. Byanalogy,
a causal conqxrncnt is an cnlily that cncapsulalcs  thcbchavior
of It lc corrcspondi  ng ph ysical component as a whol c.

A connection is an abs[raclion which charac[crizcs (I]c intcr-
ac(ion pathways bctwccn  components. A col)i]~.tiol)w’itllil]a
physical sys[cm cnab]cs malcrial or information flow bclwccn
cornponcnts. Similarly,a causal connection allowsquaniily
val ucs 10 bc propagated bet wccn components.

2 ,3 .1  Mo(lcling  tl]e SSF1!AICS

Wchavccommcnccd  a modclingcfforl to build acauwd
model of lhc SSJJIiA1’~S, using our G2-bmcd 100I called
MRSA [31 which gcncralcs the EIISEI. rcprcscnlation of a
causal model from a higher-level abstraction of a con~poncnl-
ccnlcrcd model togc(hcr wilt) (1IC nmhanisms which rcprc-
scnl Ihc physical bchaviorcrf lhccomponcnls, The MKSA-
gcncrakd  model is lhcn loaded into HDSH to pcrfonn an
cvcn[-driven simrrlalion of the EAI’CS.

I;igrrrc S rcprcscnls a simplified sc}lcmalic  of the IiA1’CY3,
sllowil~g allofltlc i~~ajor cot~~l)ol~c!~ts,  7’tlcRol:iryI;lL]idMal~-
agcmcn[ Ilcvicc @}rMI)) ]~ulllJ~s liquid al~~i~~ol~i:t  lolllc  IivaI~-
orator loop. Flow control from the RFMI) 10 each of lhc
evaporators isprovidcd  by cavitating vca(uris. la a normal
venturi wilh fixed inlet conditions, reducing the cxil pressure
rcsrrlts inan incrcmcd flowratc. ‘1’hcl’~S cavi(alingvcn[uri
passively provide flow stabili(y even wi(h downstream prcs-
surcvariatiol~s rcsultil~g fr{)]~~hcal load ctiallgcs. Atwo-phmc

fluid mixlurc of liquid and vapor is gcncralcd al c:ich cvapora-
torl~ylllc  ~)arlicl]l:~r llc.alloa(l bcil~gscrviccd. l’hclwo-phase
ll~ixltlrc isrct~lrl~cd toltlc  Rl;M1l,  which scpamlcs Ihc liquid
frol~~lllc val)ort}y cct~lrifllg:ll  forcc.. q’tlcRTiMll~}ut~~l~sltlc
vapor to thcradialors, which condcnsc  the fluid Ioa subcoolcd
stafcby rcjcctiI~g tlGlitosl)acc. l’hc Ilack Prcssurc Rcgulaling
Valve @I’RV)  maintains sctpoint lcrnpcra(urc  by controlling
syslcmprcssurc, RFMD  fluid lCVCI changes arcducprinuu’-
ilylovaryingbcal  loads andarchandlcd  byan accumulator
wilh an in(crnal tnctal hcllows separating lhc liquid and vapor
sides.

~’tlcc(~]~~])ol~ c!~ll~l{~dcl scllcl~~alic ofasil~~])lificLI  EAT’~S
cvaporatorloop is shown in Figurc6.  Wo cavitating vcn-
[uris, CWl and CW2, rcgulatc flow totwocvaporalors, IiV1
and HV2, opcraling in parallc]. ‘1’hc RI;MD is modeled as
aflowal~d  ])rcssurc soLlrcc  fortllc cval~or:~lor looJ), nl~d di-
vidcand Join tccs I)Vl m~dJ1’1  rcprcscnt the flow junctions
in lhc loop. 111 and }12rcprcscnt thchcat sources forthc
evaporators. l`tlcl~~odclcr crcalcs il~slat~ccs oflllcsccoilll)o-
ncnts from a component library which contains the dctini-
lioas of componcnl  classes. Illcir inpul and oulput qwmtitics,
and Ibc  nvxhanisms wllicb encapsulate the Iransfcr and delay
functions wilh Ihcquantilics. An CX:U1lP]C  Of a C.OlllpOIICllt
definition for Ihccavilaling  vcnluri is shown in Figure 7 .
‘1’tlisrc~)rcscr~l:iliot~ is buillbya (icvclopcrin  MESA forthc
componcai library, and lilci!lslal~liat i{)l~oftllcacltlal  under-
lying component qrranii[ics, Wmsfcr and dciay fuaciions, and
lhc il~lcr-col~~l~ol~cl~t conncdions is handicd aulomalicaily by
MliSAw'tlci~ lllccol~~i}ol~ct) tl~lodcl scllct~j:i(ic isl~uilt. I’bus,
Ihc modeler is freed from dclails of building lhc causal rnodcl
(iircc[ly in II IJSIii..
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Figure 6: The Evaporator LOOp of SSF EATCS.

I’hc component definition of the venturi as shown in Fig--.
urc 7 shows the flow of input quantities through transfer func-
tions (O output qurrntitics for each state varirrblc that dcscritis
a cavitating vcnkrri. These transfer functions arc based on
the laws of physics, fluid dynamics and thermodynamics, and
contain a complete mathematical description of the stcz~dy
slate behavior of the dcvicc, Each transfer funclion  by dcfini-
Iion may have multiple inputs, but produces a single output.
In cases where intcrmcdiatc calculations must be made to dc-
tcrminc an output quantitiy, such as for sahrration pressure
and liquid density at the venturi inlet Icmpcraturc used for
flow rate determination, mechanisms arc chained together to
produce the final result.

Llsing these generic modeling techniques, a causal model of
the simplitkd EATCY3 evaporator loop has been generated in
EDSfiL, and simulations wcrccxccutcd successfully in EIISE.
Wc are currently working to model the EATCS radiator loop
and the remainder of Ihc RFMD and BPRV.  The next slep will
be to incorporate sensor objects into the model to support the
model-based sensor importance mcawrrcs in SH.MON.

3 ]’erformance  Evaluation

‘Ile SELMON sensor importance mc.murcs are dynamically
computed each time the sensors arc polled. In order to assess
whether SELMON usefully focuses operator attcnlion while
performing robust anomaly detect ion, we performed the fol-
lowing experiment: Wc evaluated SELMON performance in
sclcding critical sensor subsets specified by an SSF EC1.SS
domain expert, sensors sccnby that expert as useful in under-

standing episodes of anomalous behavior in actual hisloricid
data from FKY.SS  tcstbed operations.

I“hc cxpcrimcnl asked lhc following two specific qucslions:
How often did SF,LMON place a “critical” sensor in the top
half of an overall ordering on the sensors’? and }Iow does SEL-
MON performance comp,arc  to traditional monitoring prac-
licc?

Wc used two alternate ways of combining the scores from
the seven sensor importance measures to ,arrivc at an ovcr:ill
ordering: 1 ) the individual scores were composed ,arithn~cti -
cally (see [81 for details) and 2) the maximum individual
score was t,aken. Wc also ran SELMON with only the a/nrw
mcmurc active, to rcprcscnt  traditional monitoring.

The performance of a random sensor selection algorithm
would be expected to be about 50.070: any p,articul,ar sensor
would appear in the top half of ttrc sensor ordering about holf
the time. Table I shows the results of our cxperimcn[. The
first column identifies onc of the anomaly episodes spczified
by lhc domain expert, qlrc sczond column shows the overall
“hit” rate for each episode using the alarm measure only,
i.c,, the pcrccntagc  of lime SELMON placed the given sensor
in the top half of the sensor ordering generated by the rr/arw
me.murc. The third column shows the hit rate using ,arilhmctic
composition of the scores. The fourth column shows Itrc
hit rate when the maximum score is used. Finally, the fifth
column shows the hit rate when either way of combining Ihc
scores is used.

‘msoDF,

High Flow Rate
Sekor  Malfunction
Wribcd Loading
Pre-Healer Off
Emergency Shutdown
Pressure Fluctuations
High Pressure
All

Alan;-—-—
97.8
100.0
48.9
100.0
100.0
98.6
92.5

Composed
‘ -  94.s””””””

100.0
56.6
100.0
100.0
100.0
95.576.3  1 .  ..-T9.g---

M a x  1 Either

83.5 –94.s
100.0 100.0
90.6 90.6
81.1 100.0
100.0 100.0
90.1 98.6
91.0 92,5—-——
88.1 9s.1

Table 1: SfILMON  F’crfornmncc at sclcding critical sensor
data.

I“hcsc results show lha~ SEI.MON  performs much betlcr
than random at rcr)licat inr? the at tent ion focusing of an ECLSS
domain expert. More to ~lc point, when the maximum sensor
importance mcmurc is used for each sensor, SELMON per-
forms considerably better than the tmdilional pmcticc of limit
sensing, Finally, when bolh methods of combining the indi-
vidual scores are available (noting ttrat, at the current time,
wc do nol have an automated tcchniquc  for determining in
context which method is more approprialc, and such determi-
nation would be left to the operator), SE1.MON performance
is quite notab]c, detecting actual anomalies ~570 of the time.

Ilcsc results lend credibility to our premise that the mosl
effective monitoring syslcm is one which incorporates sev-
eral models of anomalous behavior, and t,akcs multiple views
of sensor imporkmcc. ‘I%c best, most experienced mission
operators arc alrcx~dy rcm,arkably cffcctivc at knowing when
somelhing is going wrong on a space platform, Our aim is
to offer a more complclc, more robust set of techniques for
anomaly dctcclion, to make mission operators even more cf-
fcctivc, or to provide the basis for an automated monitoring
capfibility.
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Figure 8: A failure on lIIC waler side of SSF FKl,SS.

Wc plan 10 extend this crnpirical analysis of SELMON
Jwrformancc. in two directions: 1) using bo[h  Ihc  alrJrIn and
deviation mcastrres  as the bmclinc for pcrformrrncc compari-
son, to bc[[cr represent traditional monitoring bxhniqucs,
and 2) 10 examine the performance of the causal mcmurcs
sensitivity and cmwxzrling alarms separately, possibly in arti-
ficial domains, where the loJmlogy of the causal graph and
the rnczhanisrns can be spw.itkd to better analyze how these
measures perform under different situations of undesirable
behavior proJ)agalion.

Besides examining SELMON performance at the statistical
ICVCJ, wc have also examined individual examples of success-
ful anomaly dckdion  in S13LMON. TIc following example
illustrates how SJ31.MON  highlights a subtle manifestation of
an anomaly which the traditional monitoring techniques fail
tO dclcct.

Ihrring an cJ~isodc when the ECLSS tcstbcd prc-heater
failed (SCC lbc schematic in Figure 8), system pressure, which
normally oscillates wilhin a known range, bccarnc rnorc sta-
ble (SW Figure 9), This “abnormally normal” bcbavior is
not dckctcd by limit sensing bccausc [he system pressure
rcrnains firmly in the nominal range; nor by discrepancy dc-
[wlion, for the prcdiclcd value is roughly tbc average of the
values over time, this oscillating behavior being unnmcJcJkd.
}Iowcvcr, the SEiLMON injormalivcncss con]poncnt of tbc
surprise mc.m urc ri scs during this episode. Inforrnali vencss
rises when ttrc frequency distribution across the range of sen-
sor values moves away from a flat distribution tow,ards a
“sJ>ikc” distribution (SCC Figure 2). A suddcn]y  stable system
pressure rcsul[s  in onc of the value ranges for syslcrn pres-
sure beginning 10 dominate the frequency distribution (SCC
J;igurc 10). SJ?I.MON provides the rncans  of dctezting and
rcmoning about this kind of subllc anomaly.

Pir

Figure

X Gr.ph
“

M,o -

%c.l-

>$,, -

>,w–

J4,, -

3.w -

ll,o -

mw-

7>50-

>>c4-

,,, o-

,, Oo -

M,o -

3ow  -

-,!.  m!

“.,.,
1, w

ECUS Systcm Pressure During Abnormally
mal Episode.

Yxl O~

7JOCU

liom -

7 , 0 r J -

700 m -

6WW  -

680W  -

61003-

6,0  w

6{0~ -

640w–

6>003-

6200?  —

61053  – ‘1. . .—
Nor-

Figurc 10: /tjforrtla/i}’ctjc.$.! of IKLSS  S ystcrn Pressure IMr-
ing Abnormally Normal J3Jlisodc.



4 ‘J’owarcls  Applications

Wc arc working kr apply the SELMON  Icchniqucs  in an ad-
vanced monitoring and diagnosis prolotypc for lhc, SS1/ 13x-

lcrnal Aclivc Thermal Control Syslcm (EAI’(3). The ~’hcr-
mal ~onlro] Syslcm Automation Projcd (1’(3AP) 1111 is
developing a Jmow]cdgc-based syslcm to perform Faull I )c-
Icclion, isolation and Rccovcry  (FDIK)  on the FA’I$CS. I’hc
q’CSAP software is a hybrid advanced automation sys(cm
inlplcmcnlcd in a commercial rczzl-lime cxpcrl syslcm shc]l
calkxi G2.  11 uses a combination of convcalional progratn-
ming, rule-based tcchology, and mode]- based reasoning 10
provide cx(cnsivc diagnostic J~owcr  and ficxibilily  beyond
lhc capabilities based on alarm thrcsbolds and limit scnsiag.
Wilhin TCSAP, lhc SJII,MON  crnj)irical sensor itnporlancc
awasurcs dcscribcd  earlier have been irnplcn)cnlcd, and lcsl-
ing and cvaluafion have begun in ground-bawd Thermal Tcsi
Bcd runs at NASA JOhT]SOTl Space ~cnlcr (JSC).

Also at NASA JSC, wc arc exploring apJ~lica[ions of lhc
S1~l ,MON aJ~proach  to SJ)acc  ShU[tlC (STS) o p e r a t i o n s .  III
particular, wc arc cxarnining lhc Bnvironmcntal  Ihncrgcncy
and Consrrmablcs  Managctncnl  (P+KOM)  subsyslcm of STS.
This is (Ilc life suJJJJorl  syslcm for STS, lhc aanlog of IK1.SS
for S!W.

q’hc seven anomaly measures in SfiI.MON arc designed 10
bc aJ~J)licd scJ~aratcly.  This fe~aturc allows a SEI .MON-bnscd
aJ}Jdica[ion  to bc JwololyJwd and cvalualcd in an cfficicnt nvm -
ncr. As long as sensor data is available, on-line or historical,
the four cn~J)irical (non-rnodcl-based) anomaly nmasurcs  can
bc immcdialcly tcskd, If any form of simulation is availab]c,
the dcvia[iotl measure also can bc Icslcd. 11 is only the two
causal rncasurcs which n)ust await for the causal modeling
process 10 COn]plCIC. ‘i’hus SEI,MON  avoi(is a common lin~-
ifation of Al-based systems dcvcloJm~cnl:  lilal no dciivcry is
possibic, even a prololyJ]c  systcm, before a large knowicdgc
cnginccring or modciing invcshncnt is mndc.

5 l%t urc Work
An unresolved area in SJ31.MON  is dCvC]OJ)il)g a wc]i-founded
mctilod for uiiiiz.ing ali tile sensor in~J~ortancc measures, Wc
hnvc working concepts for how 10 conlJ)osc Iilc individual
rncmurcs inlo a lolal sensor irnpor[ancc score, bul wc consider
lilis an arc~a for furihcr work, A tilcorctical or cmpiricai anai-
ysis Inay  provide insigil( on tbc rnos[ appropriate Colnposilion

lcchniquc, onc limt is taiiorablc to different aJ)J~iica[ions.
Wc rc~ogaiz,c  that an imporlani comJJoncnl  of the SEl .MON

aJIJmmcil is li)c ability to Jwovidc explanations or inlcrprcta-
lions of wiiy a parlicul,ar sensor has been higiliigblcd and is
more worlily of oJ)cralor attcnlion lima other sensors. O(ilcr
future work in lhc SEI,MON  projcc( wiii complement cxisl-
ing sensor ordering and anomaly detection caJ~abililics wilil
modc,l-based caJlabiiiiics for cilaraclcriz,ing  anomalies by their
lcnlJ)oral and spalial cxlcnl, and focusing attention according
10 nlui[iJJlc vicwJ)oints  (causai Jwiorily, proximity 10 control
J)oin[s, J)olcntial for irrcvcrsiblc  damage, tic.).

la rciakd work, wc arc also invcsligaling  liic problcm of
sensor placcmcnt during design [4].

(i Summary

Wc arc developing kchniqucs  10 suJ~J)orl rcai-tinw nlonilor-
ing Iilrough sensor scicction, lhc momcnl  to mon]cnl focusing

of atlcntion on a subsc[ of lilt avaiiablc  sensor daia. Sen-
sor scicclion is bawd on a set of inlJJorlancc crilcria using
diffcrcnl  modcis  of wiml constitutes an anomaiy. ~’hc con~-
imla[ional rcalimlions of tilcsc in~JJor(ancc crilcria draw on
conccJ)ls from model-based reasoning, sla[is(ics, and infor-
mation theory. IixJ)crinlcntai rcsuits show [bat our sensor
sclcc(ion kcilniqucs arc cffcc.live at highligilting tile sensors
(iccnwi crilical by a domain cxJ~cri for undcrs[anding  acluai
anomalous cJliso(ics from lilt Space Stalion Frcdom F.nvi -
ronmcnlai ~oniroi and 1.ifc SupJ~or( Syslcm tcstbcd. These
rcsui[s  also suggest lha[ a nlonitoring sysictn wi)ich crnploys
n]ulliplc models of anomaious behavior is more cffcciivc [ilan
onc based on the traditional monitoring conccpls of aiarm
liu’csilolds and discrcJ)ancics,

7  Ack1~ow71edgell]cl~ts

O[ilcrs wiio have worked rczcnll y on lilt S1?1 .MON projcd
inciudc Stcvc~ilicn,  I)anici Clancy, Usma Fayyad and Harry
F’orla.

‘1’i)c rcscarcil dcscribcd in tilis paJ)cr was c,arricd out by liic
Jet ProJallsion 1.aboralory, California last it ulc of Tccimology,
under a contracl  wilil ii]c National Acrowwlics and SpOcc
Adn~inistration.
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